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ABSTRACT

This report examines the degree of success that may be achieved by using simple
equipment-vehicle models that produce time history responses which are equivalent to the
responses that would be achieved using spectral design values employed by the Dynamic
Design Analysis Method. These transient models are constructed by attaching the
equipment's modal oscillators to the vehicle which is composed of rigid masses and elastic
springs. Two methods have been developed for constructing these transient models. Each
method generates the parameters of the vehicle so as to approximate the required damaging
effects, such that the transient model is excited by an idealized impulse applied to the
vehicle mass to which the equipment modal oscillators are attached. The first method,
called the Direct Modeling Method, is limited to equipment with at most three-degrees of
freedom and the vehicle consists of a single lumped mass and spring. The Optimization
Modeling Method, which is based on the simplex method for optimization, has been used
successfully with a variety of vehicle models and equipment sizes.

INTRODUCTION

The Dynamic Design Analysis Method (DDAM) [1] has been used for the past 30
years as part of the Navy's efforts to shock-harden heavy shipboard equipment. This
method, which has been validated several times [2], employs normal mode theory [3,4] and
design shock values [5]. Current DDAM practice prescribes a modal analysis approach that
utilizes these shock design values in three orthogonal directions and takes into account the
type of vehicle, and equipment location, i.e., hull-mounted, deck-mounted, and shell-plate
mounted. Recent papers have provided an overview on the evolution of spectral techniques
in naval shock design [6]; guidance to account for structural interactive effects in choosing
design shock values from shock spectra [7]; and the demonstration of a procedure [8] for
establishing shock design curves for spectral analysis from accumulated field data.

Since the introduction of DDAM, different transient analysis methods have been
proposed as alternative approaches to spectral analysis. One such method [9) uses a simple
base mass to represent the vehicle to which the equipment is attached, and an impulsive
force applied to the base mass so as to produce shock excitation. Recent papers [10, 11]
e irmined the degree of success that may be achieved by simple equipment-vehicle models
that produce time history responses whose modal maximum response values are equivalent
to those of DDAM.

This report summarizes the major points made in the two papers published under the
current grant [10, 11], and presents new material on the formulation of acceptable transient
models.



BACKGROUND

* Consider an equipment attached to the vehicle in Fig.1(a) that is subject to a shock
excitation. The equipment may be replaced by a dynamically equivalent modal model
composed of its normal mode oscillators as shown in Fig.l(b), where by dynamical
equivalence we mean that the response of the vehicle is identical for the systems in Fig.1(a)
and (b). The mass of each oscillator is called the modal effective mass and the frequency
of each oscillator equals the corresponding fixed base natural frequency of the equipment.
Knowing these modal characteristics, we can calculate the set of modal shock design values,
N, from typical design curves such as those in Fig.2. A way of arriving at these curves can
be found in reference [8]. Having the modal shock design values, the characteristic loads
are applied to the equipment model in order to calculate the modal deflections and stresses.
These modal quantities are added by means of the NRL sum. This is essentially the DDM4
approach for estimating the maximum deflections and stresses experienced by hea y
equipment.

Each design curve in Fig.2 is for a constant modal effective weight and is represented
by the linear equation:

8 8

where f is the fixed base frequency of the equipment in Hz, and V,,. = wX is the maximum
pseudo-velocity. The maximum value of the acceleration N., for the given modal effective
mass is also known, so that eq.(1) is applicable up to the corner frequency fo where

f4 .,(N,,,)(2i V.) (2)

If the fixed base frequency of the equipment is greater than the corner frequency, V. is
reduced to V as shown in Fig.3 and the modal acceleration remains NO.

In place of using design curves the following set of typical equations [5] are used
herein for calculating the shock design values V. in in/s and N. in g's given the modal
effective weight W. in kips:

V W .(480W)
(100.4W N.-04(20+W)
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DIRECT MODELING APPROACH

Two-Degree of Freedom Equipment Model

Figure 4 shows the vehicle consisting of mass M0 and spring K0 supporting a two-
degree of freedom equipment represented by its two modal oscillators. M1 and M2 are the
modal effective masses, K, and K2 are the modal springs, and p and y are the fixed base
frequencies of the equipment, where p < y. The system is excited by an impulse applied
to the base mass. It is assumed that the equipment modal characteristics are known so that
the DDAM inputs can be calculated from eq. (3) in the form of the pseudo-velocities
V1= PX1 and V2=yX 2.

The problem centers on selecting the base mass, the vehicle frequency o, where o2
= KO/Mo, and the magnitude of the impulse velocity V0 so that the ensuing time history
motion of the modal model produces an equivalent shock damage potential as predicted by
a DDAM analysis. Thus, if we scale the modal oscillator rehtive displacement X1 by P and
X2 by y, the peak amplitudes of each time history should be equal to the shock design
values P X1 and yX2 prescribed by the DDAM inputs.

Analysis
The frequency equation for the three-degree of freedom system in Fig.4 is

(02. 2 )(p2_ 2)(.t_. 2 )" 2(y2.. 2) . ,. 2 2(p 2 ) = 0 (4)

in which u = MI/Mo and r M2/M0. A general schematic locating the roots (o, c2, and
w53 is shown in Fig. 5. The region for the equipment fixed base frequency p, where W < P
< w., and the fixed base frequency y, where w. < y < w3, are shown along with the vehicle
frequency o.

The response of the equipment modal mass M, relative to the base mass is:

-X2/V 0  (A/w,)sin wt + (B/w 2)sin wat + (C/w)sin w3t (5)

in whichinA = (€1- c12  2)/(€ 2 - oz2)(o:2 - oI2)

W - 2 - 2 p 2)/(l - 62,)(C,3 - 2)

0 C (4 - C 2p )/(W,1 W32 X2) ( 6- 3 )

It can be shown that

IX2V01 , = Q/D (6)
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in which
Q = (p 2 + (a24622, 2)(2 2),31 + 4-2p 2)(o2 2)01

D = 6)102(03(6)22-012)(032-012)(6 3 2-622)

Likewise,

IXIVol. = R/D (7)

in which R = (y 2 W, kC1 4)(W 3 "62)2(03 + (V22 2 ) 24W3 2 12)WI1'3 + (( 3'- 3
2y2)(C6 2 

2_011)W I62

Equations (6) and (7) form the ratio of the shock design values as:

r = P XI/yX 2 = P R/yQ (8)

Knowing the ratio r from eq.(3), the problem is to find Wo and 0 so that the terms on the
right side of eq.(8) are satisfied. Once this is aehieved, eqs. (6) and (7) may be rearranged
to find the relationship for Vo as:

V0 = 0 X1D/P R or V0 = yX2D/yQ (9)

The transient modal model is now complete. Assigning the initial velocity Vo to the base
of weight W0 and knowing the vehicle frequency o, the ensuing time history motion of p X,
and yX, should produce peak values equal to the prescribed shock design values.

It is interesting to let W0 = c so that A and r are zero in eq.(4). It follows that the
system frequencies are 0, fl, and y. Equation (8) reduces to

"( - r-) (10)

Since o must be positive and p < y, there is a gap where eq.(10) holds, namely, P/y < r
< 1. It was observed that for the limited number of examples studied values of 0 less than
o in eq.(10) could never yield a transient model that satisfies its DDAM design ratio r.

Finally, if we let Wo approach zero in eq.(8), it reduces to r = 0/y.

Example 1
Let the modal effective weights for the two-degree of freedom equipment in Fig.4

be 26 kips and 60 kips and the corresponding fixed base frequencies equal 27 Hz and 61 Hz,
respectively. The shock design values, obtained from eq.(3) are P X, = 80.31746 in/s and
yX2 = 67.50000 in/s so that the ratio r = 1.1899. Note that this is the type of system for
which a solution was unattainable when the vehicle spring K0 was not present [ 10]. Figure

4



6 contains plots of the ratio r as a function of the base weight W0 for fixed values of the
vehicle frequency ,. These include 0 = p and 0 = 0.50, both of which provide a value W0

9 by intersecting the straight line representing the ratio r; 0 = y = 2.2596 which does not
intersect the r-line; and 0 = 0.254p obtained from eq.(10) which approaches the r-line
asymptotically as Wo approaches infinity. Table 1 summarizes the results for the two designs
that provide viable transient models.

TABLE 1- Example 1
DDAM p X, = 80.3175 in/s DDAM yX 2 = 67.5000 in/s

Design o(Hz) We(kips) V0(in/s) I oX, Im I YX21 max

1 27 79.44 67.9910 79.0696 66.1933

69.0641 80.3175 67.2380

2 13.5 251.40 60.1793 79.9947 67.4454

60.2280 80.0594 67.5000

The values listed in the fifth and sixth columns are the maximum absolute values of the
responses of the modal masses for the initial velocity V0. After the first trial run, V0 was
scaled so as to provide a more accurate value of the required peak values of ' X, and yX,.
Figure 7 shows the base motion for Designs 1 and 2 from which the response spectra in Fig.
8 were obtained. Note that since the base motions are different for the two designs, the
corresponding shock response spectra are also different. However, we observe that the
shock design values at the fixed base natural frequencies of the equipment are identical, as
indeed they should be.

THREE-DEGREE OF FREEDOM EQUIPMENT

t:z .! : the modal model for the three-degree of freedom equipment shown in Fig.9
attacheu o the vehicle of mass M. and spring K.. As in the case of the two-degree of
freedom equipment, the base mass is excited by an impulse producing an initial velocity Vo.
Knowing the equipment fixed base frequencies f, y, and 6, where 0 < y < 6, and the
modal effective weights, the DDAM-like shock design values are calculated and labeled
8 X1, yX2, and 6X,. The analysis of the maximum response of the relative motion of each
modal oscillator is similar to the two-degree of freedom equipment except that there are
now two independent ratios to satisfy from the three shock design ratios defined as follows:

r, = 0 X/yX; r, = 0 XI/6X3; and r3 = yX2/6X 3.

The equations for finding these ratios are summarized in Appendix A. It is emphasized that
the desired vehicle parameters W0 and o must be found such that the two independent

5
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ratios are equal to their respective DDAM values. This requires a trial and error process
that is described in the following example.

Example 2
Table 2 lists the modal effective weights, the fixed base frequencies, and the shock

design ratios for the three-degree of freedom modal equipment model in Fig.9.

TABLE 2 - Example 2

Modal Weight, W i  Frequency, f Ratio, ri
(kips) (Hz)

1 60 58 0.8406

2 26 61 0.7576

3 10 90 0.9012

A trial and error procedure is used to find the base frequency 0 such that the plot of two
of the ratios corresponding to the largest modal weights intersect their DDAM design ratio
value at the same W0. This is achieved by finding the value of W0 at each point of
intersection, say W01 for the r, plot and Wo2 for the r2 plot. A solution is normally found
rather rapidly by examining the change in sign in AW0 = (W01 - W0) as 0 is varied. For this
example a value of o/P = 0.9475 was found after eight iterations that gave satisfactory
results shown in Fig.10. Note that all three r-plots intersect their design ratios at W0 = 455
kips.

Example 3
Let the overhanging IOWF25 beam support three equal lumped masses each equal

to 25.88 lb-s2/in as shown in Fig. 11. Table 3 lists the modal effective weights, the fixed base
frequencies and the shock design ratios.

TABLE 3 -Example 3

Modal Weight, W Frequency, f Ratio, r
(lps) (Hz)

1 2.103 6.205 1.1868

2 27.572 17.884 0.9862

3 0.325 54.808 0,8310

Figure 12 shows the cross-over points for each ratio occurring at WO 90.25 kips for the
case where 0 = 0.367 p. Figures 13(a-c) show the time responses of the scaled relative
displacements where V0 = 82.1748 in/s. The measured peaks values from these data points
are compared witii the DDAM shock design values as follows:

6



P X, = 93.013 in/s versus 94.435 in/s
yX 2 = 79.374 in/s versus 79.574 in/s
6X3 = 95.754 in/s versus 95.754 in/s

The difference between the measured versus the desired values are due primarily to
roundoff errors and a finite time increment of 0.001 seconds in the time history response.

0
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OPTIMIZATION MODELING APPROACH

Badgound
The direct modeling approach is appropriate when the equipment has at most three

degrees of freedom. This method is impractical for equipment with more than three
degrees of freedom because the algebra becomes unwieldy and there are too many ratios
to satisfy by the trial-and-error method. Therefore, an alternative method was investigated
which could handle equipment with higher degrees of freedom.

An optimization method was chosen which minimizes the error between the time-
history responses of modal oscllators and the desired DDAM values. As in the case of the
Direct Modeling Approach the equipment is attached to a vehicle that is excited by an ideal
impulse. The vehicle's parameters are optimized so that the absolute maximum (peak)
responses of the oscillators closely match the prescribed DDAM inputs. In this approach,
the number of degrees of freedom of the vehicle and equipment are not as narrowly limited.
It will be shown from the examples that as the number of DOF of the vehicle increases, the
number of DOF of the equipment may also grow in order to maintain acceptable error
levels.

Modelingfor Optimization
A. Vehicles

Six vehicles were used in the optimization scheme as shown in Figure 14. Vehicles
2, 4, 5, and 6 are grounded, whereas vehicles I and 3 are free-free structures. The modal

0 frequencies and mode shapes are obtained by solving for the eigenvalues (modal
frequencies) and eigenvectors (mode shapes) of the differential equation of motion, written
in matrix form as follows:

[M'1K - w9i] [XJ - (01

in which
M an n' order mass matrix
K = an ntb order stiffness matrix
(a =fixed base natural frequency
X = displacement vector

Since vehicles 1 and 3 are free-free systems, normal mode theory states that they will
exhibit rigid-body motion in mode 1, and the first modal frequency will be identically zero.
Solving for the eigenvalues and eigenvectors numerically gives rise to round-off errors. For
the free-free systems, the numerical calculation of the first modal frequency is not identically
zero due to the inherent errors in the code; therefore, the code employs the method of
matrix deflation when using the non-grounded vehicles to correct this inconsistency.

The matrix deflation method reduces the M'K matrix (dynamic matrix) from an n'
order to an (n-l)th order niatrix without disrupting the eigensolution. It uses the knowledge
that the mode shape of a free-fiee system in mode 1 is a vector of all ones. From the

8
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orthogonality relation of normal modes, the leading matrix is then reduced to a matrix of
order (n-i) (refer to Appendix B). This deflated matrix, known as the reduced dynamic
matrix, contains the same modal frequencies and mode shapes for all remaining modes (i.e.
all modes except mode 1) as the original dynamic matrix. By this method, the modal
frequency in mode 1 is set to zero, its corresponding mode shape is given all ones, and the
remaining modes and mode shapes are determined by standard numerical methods.

B. Error Functions
The optimization routine updates the parameters of the vehicle such that the absolute

maximum responses of the modal oscillators to an ideal impulse most closely match the
DDAM inputs. To do so, the code minimizes an appropriate error function which serves
as the criteria for evaluating the responses and moving them toward the DDAM input
solution. Several error functions that were used in this investigation are described below.

1. Root-mean-square error function:
Eau = V(Q, -'0)' +(M -'2)2 +2 +(Q. (12)

in which
Qi = time-history absolute maximum response of each modal oscillator

Qj = DDAM input

This error function is quite useful in obtaining modal responses close to the
prescribed DDAM input values; however, all the errors are equally weighted. With this
error function, it is possible to have large percentage errors between the time-history
responses and the DDAM design values for some oscillators and very little percentage error
for others. It is often desirable to weight the errors to ensure the errors arc distributed
more evenly.

2. Weighted rms error function:

o = VAt(Qi -)+A2(QaQ:o 2 + + AI(Q. (13)

in which
,, = weighting factor

0 These two error functions are quite effective for optimizing the responses, but they
have no physical meaning. New error functions which would have a more functional
application were explored. Since DDAM decrees a set of modal oscillators that transmit

9
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loads to the base support, it seems reasonable to express these forces in terms of the root
mean square summation as follows:

FDM,n g ,(M1N) 2 + (M2N2)2 ... + (MX8 )2  (14)

in which

Mi = modal masses

N= DDAM accelerations (g's)

g = acceleration of gravity

0 Similarly, normal mode theory shows that the force transmitted across the boundary
from the equipment to the vehicle is identical for both the lumped equipment model and
the modal oscillator model (as shown in Figure 1). Therefore, an analogous rms force
equation can be written for the time-history acceleration responses of the oscillators. By
comparing the two force equations, an error function of the rms force transmitted across the
boundary from the equipment to the vehicle, where the gravitation constant is neglected, is
formulated.

3. Rms force error function:

.0,= Mj(NI - N ) + MN- N2) + .. M (N, - TV)' (5)

in which Ni = time-history absolute maximum acceleration response of each modal oscillator

Another means of evaluating the error is by summing the individual force
contributions of each oscillator. Each oscillator will render a magnitude of force

r. = AfgN, (16)

Relating these forces to the respective DDAM forces offers another appropriate error

-function of the force. Once again the gravitation constant is neglected.

4. Actual force error function:

E = M11N, -NI1)I J+ N1 -N2 R2)1 + +M .(N, - 1 (17)

The error functions of eqs.(15) and (17) are both appropriate; however, the latter
error function is experimentally preferable because for a given set of responses, the error
from the actual force function is larger than for the rms force counterpart. Therefore, the
solution is further from zero and more easily minimized.

10
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All four error functions listed above, however, were tested to some degree before
making the actual force error the function of choice. In the early stages of the optimization

* efforts, the rms error function [eq.(12)] was used to solve examples involving two, three, and
four degrees of freedom equipment attached to vehicles 2, 3, and 4 in Figure 14. Several
of these examples were then reworked using the weighted rms error function [eq.(13)]. The
weighted rms error function proved favorable because it allowed for more user irfluence on
the solutions obtained. Again, though, these error functions had no physical meaning.

* Therefore, vehicles 5 and 6 were tested for equipment with six or more degrees of freedom
using the force error functions [eqs.(15) and (17)]. The actual force error function was more
efficient for the reason listed above; consequently, the examples solved using the
optimization modeling method, presented later in the text, employ the actual error function
of eq.(17).

• Simplex Method
The minimization routine chosen for the optimization modeling method is the

downhill simplex method by Nelder and Mead [12]. This multi-dimensional minimization
routine was selected because it is logically quite simple and easy to implement, and is one
of the few multi-dimensional minimization methods that requires only function evaluations

* and not derivatives. For our purposes, the computational burden is small and the additional
efficiency associated with the gradient techniques is not recessary or desired. Reference
[13] provides the computer code that has been developed for the simplex method.

A simplex is a geometrical figure consisting, in N dimensions, of N + 1 vertices and
all their interconnecting points, polygonal faces, etc.. In other words, if the vehicle has three

0 parameters (design variables) to minimize, the simplex will have four vertices. Each vertex
will have three coordinates, corresponding to the three design variables, specifying its
position in the design space. Visually, the simplex will be a tetrahedron in 3-space as shown
in Figure 15.

To begin the minimization, a starting simplex must be chosen. Let P0 be the initial
* guess vertex. A favorable choice for the other vertices is the following:

P, = + O +e, (18)

in which
*ej = directional vectors

a = arbitrary length scale constant

11



The length scale constant multiplied by the directional vector e serves to expand the
ith vertex in only one coordinate direction. For example, let

Po= Yi
Z,

The other vertices, obtained using eq.(18). are the following:

Yx1; P2 = [yI+*yIJ; ,= Y (19)e' Iz I ,, I z

These four vertices and all their interconnecting points make up the starting simplex. It
should be noted that a can have a different value for each vertex of eq.(19). Also note that
the vertices of the starting simplex can be entered in randomly (without using eq.(18)) as
in Figure 15. However, the downhill simplex method is most efficient when there is a

*@ certain measure of geometric symmetry. In the examples solved by the optimization
method, a length scale constant of a =2 was found to be advantageous.

Using the initial simplex, the method moves the simplex "downhill" towards a solution
by evaluating the error function at each of the vertices and moving the highest error vertex
to a lower error position. There are four possible movements of the simplex for each

* iteration:
(1) move the vertex with the largest error through the opposite face of the simplex to a

point of lower error (reflection);
(2) when the reflection offers a lower error, the simplex will look to expand itself in that

direction so as to take larger steps;
• (3) if the simplex reaches a "valley floor", it contracts itself along the transverse direction

(away from the highest error vertex) in order to move down the valley;
(4) if the simplex encounters an "eye of the needle", it contracts itself in all directions,

pulling itself around the vertex of lowest error.
In effent, the simplex moves through the design space by evaluating and comparing

• the errors at each of its vertices. It then modifies itself according to the conditions above
until all the vertices of the simplex meet a desired convergence criteria. The convergence
criteria built into the downhill simplex method requires that the decrease in the error
function in the terminating step be fractionally smaller than some tolerance. At this point
the simplex is said to surround a local minimum. A tolerance of lxO was suitable for the

• examples solved by this method.
Several modifications were needed to use this minimization method. To begin with,

the design variables used in the optimization are mass and frequency. The existing simplex
method would search for a solution for both positive and negative values of mass and
frequency. Since negative mass and frequency have no physical meaning, the first revision
to the simplex subroutine was made to easure that thc mass variables never became

12



negative. It was not necessary :o constrain the frequency variables because the eigenproblem
wo, lk with the square of the frequency [eq.(11)] which is always positive. The second
constraint on the design variables restricted the mass variables from becoming zero. Zero
mass is impossible to handle in the eigenproblem because the system overflows when trying
to invert a mass matrix with a zero element in the diagonal. In the event that a mass
variable becomes zero, the variable is set to unity within the simplex subroutine so as not
to affect the geometry of the simplex in any significant way.

Gp2tindvitiou Scheme
The optimizaticn routine minimizes on the responses from the time-histories of the

modal oscillators. The eigenproblem is solved and the system's response to an ideal impulse
[31 is give~i by the following formula:

y1 X so , (20)

k

in which
= mass r h of the system

y; = displacement of mar m
X. = mode shape for mass rn in mode a
Wo" = system natural frequency in mode a

= ideal impulse applied to mass Me

The displacement of mass mi. relative to the base mass M0, scaled by 1,, is the following:
- yo) : Xi, -Xo,,)x

in which
i = fixed base natural frequency of mass m

These pseudo-velocities are comparable to ,he DDAM inputs V, in eq.(3). Similarly the
absolute acceleration of mass n due to an impulse applied at mass M0 is the iollowing-

Yi'_1E-a (22)
Aa

These accelerations, expressed in g's, can be compared to the DDAM inputs N. in eq.(3).
Consequently, both the velocity axid acceleration response equatic:s could be used to
compare the velocity or acceleration responses to their respective DDAM inputs. However,
it is possible for one of the modal frequencies to be zero as in the case of a free-free system.

13



A zero frequency will blow up the velocity eq.(21) but not the acceleration eq.(22). For this
reason, the optimization routine minimizes on the acceleration responses of the oscillators

0 rather than the velocity responses.
Every iteration in the minimization subroutine requires updating and solving the

eigenproblem and then examining the time-history records to find the peak responses. This
can be extremely tedious and time consuming if a good starting solution is not known. To
find a good starting solution, we examine the ratios of the maximum acceleration responses,
i.e.,

S2
Rn = k (23)
WJmay L42 1

E ~MkXk.
k

Notice that for n mass responses, there are (n-i) independent ratios of these
responses. For convenience, choose the (n-i) independent ratios to be all with respect to
mass 1. We can now use the following rmis error function to get some idea as to where a
solution lies.

in which

Rik - ratio of the acceleration responses of ma 1 to mass k
RA respective DDAM accelerateon ratio

By introducing the maximum response ratios error function, we can eliminate the
lengthy time-history process. Furthermore, minimization of the error function in eq.(24)
gives fairly accurate results when there is a small number of modal oscillators, The results
from this minimization are then used as starting values in the time-history minimization of
eq,(17).

General Procedure:
Starting with a given set of modal oscillators and vehicle, the first step in the

optimization method is to minimize the error function in eq.(24). Once an acceptable
solution is found, the vehicle parameters of the solution are used as the P0 vertex of the
starting simplex in the time-history minimization. Finding an acceptable solution, though,
can be quite tedious because in many examples, there are an infinite number of local

14



minima in the design space. By starting the simplex at different locations in the design
space, the downhill simplex method converges to the various local minima. Therefore,

* finding an acceptable solution requires scanning the design space by means of the guess
vector P0 to find the best of the local minima. More details are found in Appendix C.

The second phase in the optimization modeling approach is the minimization of the
time-history responses. Using the solution from the absolute sum ratios minimization, an
appropriate time increment is calculated (refer to Appendix B), an initial kick-off velocity
is chosen arbitrarily, and acceleration records for each oscillator are created. From these
records, the peak responses are found. The kick-off velocity is then scaled (refer to
Appendix B) so that the acceleration responses are comparable to the DDAM accelerations.
Using the actual force error function [eq.(17)], the minimization routine converges on a
'best" solution and the percentage errors between the time history acceleration peak
responses and the DDAM acceleration inputs are calculated for each mode.

Example 4
To show the usefulness of the optimization modeling approach, the results of

Example 3 were reproduced using the optimization routine. In this example, vehicle 2 of
Figure 14 was used with the same set of modal oscillators as in Example 3. Several

* solutions were found using the optimization method; but, we were mainly interested in the
solution discussed in Example 3. The optimized solution occurred at W0 = 90.76 kips and

-= 0.366 f, with a kick-off velocity V0 = 82.3642 in/s. In this problem, the kick-off
velocity V0 was scaled so that there would be zero percentage error between the transient
velocity and the DDAM velocity for the third modal oscillator, as in Example 3. Table 4

0 lists the measured peak acceleration responses scaled by g/w1 , the percentage errors between
the transient pseudo-velocities of the optimization modeling method (OMM) and the
DDAM inputs, and the percentage errors between the transient pseudo-velocities from the
direct modeling method (DMM) and the DDAM inputs.

Table 4 - Pseudo-Velocity Responses In (in/s) for Example 4

Modal Transient % Error for % Error for
Mass Pseudo-Velocity OMM DMM

1 93.2758 1.23 1.51

2 79.5383 0.45 0.25

3 95.7538 0.00 0.00

It is evident that the optimization modeling approach verifies and slightly improves
the solution of the direct modeling method.
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Example 5
An equipment represented by six modal oscillators was attached to each of the six

vehicles in Figure 14, to show how the percentage errors between the transient accelerations
and the DDAM accelerations are distributed according to the choice of vehicle. Since the
OMM optimizes the vehicle's parameters to acquire the best responses, we anticipated that
the vehicle with the most parameters would offer the best modal responses. The modal
weights and fixed-base frequencies for the six degree-of-freedom equipment are listed in
Table 5.

Table 5 - Example 5

i 1 2 3 4 5 6

Modal Weight (kips) 100 80 60 26 10 6

Freouency (Hz) 20 25 58 61 75 90j

Following the general procedure above, the modal oscillator responses of each
vehicle were optimized. Table 5A is a tabulation of the optimized time-histoiy peak
acceleration responses in g's of each modal oscillator and the respective DDAM inputs for
all vehicles.

Table SA - Acceleration Responses in g's for Example 5

Vehicle Mass 1 Mass 2 Mass 3 Mass 4 Mass 5 Mass 6
- m m - -

1 22.8192 32.2972 70.1544 100.5522 100.7881 116.5813

2 17.6455 27.3462 58.0961 86.1893 121.2948 119.3071

3 18.7691 25.1460 69.2955 79.8938 99.5137 127.0906

4 18.6140 25.3998 64.5434 79.8035 104.3233 138.1553
5 18.9529 25.9094 64.2436 80.6730 103.0229 136.7243

6 18.8122 24.9171 63.7317 79.5598 108.3465 136.3057
DDAM
Accr 18.8778 25.3151 63.7126 79.7321 108.7397 134.3063

As expected, the transient accelerations of the oscillators more closely match the
DDAM accelerations as the number of parameters of the vehicle increased. Table 5B lists
the largest percentage error associated with the modal oscillator responses and the oscillator
number for which it occurred.
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Table 5B - Example 5

Vehicle Largest % Modal Mass with Largest

1 27.58 1

2 11.55 5

3 8.76 3

4 4.06 5

5 5.26 5

6 1.57 2

The largest percentage errors significantly decreased as the number of vehicle
parameters increased. Therefore, for systems involving large degrees-of-freedom equipment,
vehicle six is the best choice for the optimization method. It is interesting to observe that
there is little difference in the results for vehicles 4 and 5, both of which have four design
parameters.

Example 6
In many real systems, the modal effective masses of the equipment do not decrease

in descending order, as in example 5. For example, the overhanging beam system of
Example 3 has more modal effective mass in mode two than in mode one. Example 6
examines whether or not the optimization method can handle large degree-of-freedom
equipment examples where the second modal oscillator has more mass than the first. For
the reason listed above, vehicle 6 was used in the example. Table 6 lists the modal effective
weights and fixed-base frequencies of the equipment. Appendix C describes the steps used

0 to find the parameters of the vehicle.

Table 6 - Example 6

i 1 2 3 4 5 6

Modal Weight (kips) 80 100 60 26 10 6

Frequency (Hz) 20 25 58 61 75 90

The optimized transient accelerations of the oscillators, the respective DDAM
* accelerations, and the percentage errors between the two accelerations are tabulated in

Table 6A.
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Table 6A - Acceleration Responses in g's for Example 6

Modal Transient DDAM % Error
Mass Acceleration Acceleration

1 20.0651 20.2521 0.92

2 23.4074 23.5973 0.54

3 63.6255 63.7126 0.14

4 79.5716 79.7321 0.20

5 109.6985 108.7397 0.88

6 134.1451 134.3063 0.12

The percentage errors associated with each modal oscillator are all less than one
percent. Therefore, it appears that problems of this nature impose no problems in the
optimization method.

Example 7
Example 7 serves to illustrate the range over which the optimization method is

effective. A nine degree-of-freedom equipment is optimized using vehicle 6. The modal
effective weights and fixed-base frequencies of the modal oscillators are listed in Table 7.

Table 7 - Example 7

i 112 3 4 5 6 7 8 9

Modal Weight (kips) 100 90 75 60 45 26 15 10 6

Frequency (Hz) 20 25 40 58 61 70 75 90 95

Table 7A lists the parameters of the vehicle and the value of the step change in
velocity of the base point. Table 7B is a listing of the optimized transient accelerations in

0 6's of the nine modal oscillators, the respective DDAM accelerations, and the percentage
errors.

Table 7A - Vehicle Parameters for Example 7

[W(kips) f,(Hz), Wo(kips) f(Hz) , Wb(kips) fb(Hz) Vo(in/s)

1914.60 95.09 230.84 59.26 317.43 37.50 275.44
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TABLE 7B - Acceleration Responses in g's for Example 7

EModal Transient DDAM % Error

Mass Acceleration Acceleration

1 18.9115 18.8778 0.18

2 24.5534 24.4110 0.58

3 41.3025 41.2894 0.03

4 65.5762 63.7126 2.93

5 71.8709 71.8861 0.02

6 94.5727 91.49,59 3.36

7 104.4270 105.0733 0.62

8 129.5284 130.4877 0.74

9 140.3157 141.7678 1.02

The largest percentage error was 3.36 percent which is relatively low. Figure 16 is
a plot of a sample of the time-history response of modal mass 6. We can now suggest that
if we optimize equipment with degrees of freedom greater than nine without increasing the
number of vehicle parameters, the overall errors would grow with the size of equipment.
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SUMMARY AND CONCLUSIONS

0
Two approaches were taken in developing transient modal models that replicate the

damaging potential prescribed by DDAM-like inputs: the Direct Modeling Method and the
Optimization Modeling Method. The Direct Modeling Method has been limited to two- and
three-degree of freedom equipment because the algebra becomes prohibitive as the system

* grows in size. The vehicle in each case is represented by a lumped mass and a ground
linear spring that is excited by an impulse applied to the mass. Experience gained in using
DMM shows that the two-degree of freedom equipment provides an infinite number of
acceptable transient models while the three-degree of fr-eedom equipment normally provides
only one, and possibly a second, transient model. The transient models developed in
Examples 1-3 reproduced, with negligible error, the equivalent DDAM shock damage in the
time history response of each oscillator.

The Optimization Modeling Method was developed to overcome the algebraic
difficulties with DMM when the equipment exceeds three-degrees of freedom. The method
uses the Simplex Method for optimizing the parameters that make up the vehicle, where the
vehicle is selected based on the number of degrees of freedom of the equipment.

0 Example 4 examined the same problem as posed in Example 3, in which the
equipment was composed of three-degrees of freedom and the vehicle was composed of a
mass and an anchored spring. The OMM provided results that compared quite favorably
with the results found in Example 3.

Examples 5 examined six different vehicles varying in complexity from a single mass
* (vehicle 1) to three masses and three springs (vehicle 6). Each of the six vehicles supported

an equipment represented by six modal oscillators, The results clearly demonstrate that as
the number of parameters of the vehicle increase, the errors produced by the transient
models decrease significantly. The largest modal response error for vehicle 1 was 27.58%
while the corresponding error in the case of vehicle 6 dropped to 1.57%.

* In the case of Example 6, the modal mass in mode-two was chosen larger than the
modal mass assigned to the mode-one mass. No unusual problems were noted in developing
the transient model since the error in reproducing the DDAM shock value in each mode
was less than one percent.

It was decided to examine the level of errors for a nine-degree of freedom equipment
0 attached to the vehicle with six parameters. The results were very encouraging in that the

largest modal error was less than 3.37 percent as shown in Example 7.

0

0
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APPENDIX A
EQUATIONS FOR THE DIRECT MODELLING APPROACH

The following summarizes the equations for finding the maximum relative
displacements of each of the three modal oscillators in Fig. 9:

i* nl + n2 n3 + n4
Vo d

in which
•. (y , (W2 _ Wb (6- )2 _, - b (W2., -

n1 ,,, 3. 4 48 , c, - € ,- c, - ,Wb

2 o - , -) ( ,2 -W (w2 - (2 - , ( , -Wb

= d

• in which

°~ ~ ,,,c 2-,) (82 - (ob (W1- 6,)) €(6, )2,, ,

n . ( 6 - ( 2) y2 4 - ,-

SY2 €(- p - ( -2 (, -

Vo., d

in which

n o ° (' -- (, - , (' - ,,),) , - )(,4 -1( )

* ~(02 _ )(1 .y)( 2  (W1)'4~4

n5 -- 1,, (A , - p) (, - 9) (W , - b- ', )(W' - Ca,)
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APPENDIX B
Special Equations for the Optimization Modeling Approach

Matrix Deflation Method
Consider the eigenvalue/eigenvector problem

M-1KX = ,X

in which MK is called the dynamic matrix D. By the othogonality of normal modes, we
know that

E -0
j

MilXl 4Xlb + m2 X + ... +mXX, 1 , = 0
mXXXX b in3XaX 3b maXxb

bmt  ni  m1

Using the fact that for a free-free system, the mode shape for mode 1 is a vector of all ones
such that

X11 =X21 =*..=Xai =1

and letting b = 1, we have the following relation:
m 2  _m 3  m X,(*)

M1 M1  M1

Using the above relation, we can write X in terms of a transformation matrix P such that
X =PX, or

x11 x12 X13 " in 0 ixt 12  13 xin
X21 X22 X23 ... X2x M/1 m1 m1 X21 X.4 X23 XU £

0 1  0 1 ... 0..

X31 X32 X33  X ,= X31 X3 X33 XU
0 0 1 ... 0

* Xx 2 XX3 ... X, o 0 0 1 X*1 xX, X, ... X,

Now we rewrite the eigenvalue/eigenvector problem as

DPX = XX
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Multiplying the dynamic matrix D by the L-iatrix P produces the fllowing:

* r 11 D1  D13  D1, [ -m- .P . "0 RA 2 R13

D21 D22 D23... D m1  0 R2 R ... R-

D31 D32 D33 .. D 0 1 0 0 0 RL R33 ... RUD 0 0 1 ... 0

Da D ..- D X 0 0 0 ... I 0 Rx2 Rx3 ... RIO

From this motrix we get the reduced matrix R.

R23R ... R3,

[R](,.Ix .lt ) = R R3 3 . RU

R ., R 8 3 .. . R m

The reduced matrix R is liown as the dynamic matrix of the reduced eigenproblem

RX = XX

The natural frequencies and mode shapes of this eigenproblem are the same as the natural
frequencies and mode shapes of the original eigenproblem for all modes except mode 1.
Using back substitution with eq.(*), we can solve for XI..

Optimizing Kick-off Velocity
Arbitrarily choose a guess kick-nff velocity V0'. Since the acceleration equation

[eq.(22)] is linear, tht kick-off velocity simply scales the acceleration. The problem thus
revolves around finding a multiplier s, where V0=sV0', that minimizes the error. Again we
shall coisider an rms error function:

E2 . (35 - sFI)2 + (N2 - sN2)2  + (,( _ SNS)2

Minimizing on s we have

*2E = 2(Nx -sN 1)(-NI) +2(N2-sN2)(-N2)+...+2(N,-sN)(-N.) = 0
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Solving for s we find that

S=

~N

and the appropriate kick-off velocity is

V0  Vol

Choosing an Appropriate Time Increment

We wish to keep the largest angular displacement

e,. = 0a0 m t -r 360

Choosing a time interval of t 0 -. 1 seconds with N increments, we can write

2 nfdsA T = 36 il0-

or

A T,
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APPENDIX C
Finding a Solution for the First Phase of the Optimization Modeling Method

The first phase of the optimization modeling method is the minimization of the
absolute-sum acceleration ratios as expressed by eq.(24). Since most of the examples tested
had more than one local minimum, many starting vectors P0 were used in the minimization
process in hopes of finding the best of the local minima. Vehicles 1, 2, 3, and 4 have four
or less parameters so that there are at most two mass or frequency design variables. These
vehicles can be optimized with a small number of trials by arbitrarily choosing initial guess
vectors P0. For these vehicles, each initial guess vector has at most four permutations
(vehicle 4) if the mass and frequency variables are required to remain in one of the two
mass and frequency slots, respectively. Choosing several guess vectors and running the
minimization program for each guess vector, and all their permutations, generally locates
a "good" solution without excessive number of trials. However, with vehicle 6, any guess
vector can be rearranged into the 36 possible permutations (again only allowing mass
variables in the mass slots and frequency variables, frequency slots). Examining all 36
permutations of various guess vectors can become quite tedious. Generally speaking,
though, a good solution can be found by examining only one guess vector and its
permutations (refer to Example 6 below).

Example 6 uses vehicle 6 in the minimization. As a first choice, an initial guess
vector and length scale constant

M 500
ft 25
Mo 150oa

PO fof 50 f2

fb 
75

was used. In this case, the mass variables of Figure 14 (M, M) correspond to
(500,1500,3000) and the frequency variables (f, fo, fb) correspond to (25,50,75). For east in
understanding, let the mass variables be (a,bc) and frequency variables be (x,y,z). Using
the initial guess vector above, we know that there are 36 possible ways of rearranging this
vector if we require that a, b, and c only be interchanged with one another and that x, y, and
z only be interchanged with one another. Table Cl lists these 36 possible combinations in
terms of (ab,c) and (x,y,z).
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Table CI - A 6-Parameter Guess Vector has 36 Permutations

a x a x a y a y a z a

b b b b b b
y x z x y

C C C C C C
0z y z y y x

a a a a a a
x x y y z z

c C b c c c
y z x z x y

b b c b b b
Z y ZI x y x

b b b b b b
x x y y z z

a a a a a a
*y z x z x y

C C c C C C
z y z x y x

b b b b b b

c y cy cz cz

y z x z x y
a a a a a a

z y z x y x

cx cx cy cy cz cz
a a a a a a

y z x z x y

b b b b b b
z y z x y x

a
Zaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

C C C C C8



All 36 combinations were used as starting vectors in the optimization routine. The best of
these solutions was found to be when the guess vector Po was in the following form:

c' 3000
y 50
a 50o
z Z 75
b 1500
xj 25

The optimized vehicle parameters for the first phase of the optimization method are listed

in Table B1 where the modal mass has been replaced by the modal weight in kips.

Table BI. Vehicle Parameters for Example 6 using Eq.(24); V.= 75.76 in/s

Wx (kips) f. (Hz) Wo (kips) f0 (Hz) W. (kips) fb (Hz)

372.20 50.67 268.27 83.29 342.36 38.69

The root-mean-square error in eq.(24) associated with these parameters is E =
3.44x10 7. These parameters were now used as the starting vector in the second phase of
the optimization routine, namely the time-history minimization. The time-history
minimization resulted in new vehicle parameters which are listed in Table B2.

Table B2 - Vehicle Parameters for Example 6 using Eq.(17)

Wx (kips) f. (Hz) Wo (kips) fo (Hz) Wb (kips) fb (Hz)

373.53 50.48 274.50 L 83.63 374.52 39.37

The transmitted force error in eq.(17) associated with these parameters is E = 123.29
lb/g. It is evident from Tables BI and B2 that there is only slight changes in the vehicle
parameters when optimizing on the time-histories; hence, the solution to the absolute-sum
ratios minimization did in fact offer a good starting solution.
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